Pyrolysis is a thermochemical decomposition of organic material at elevated temperatures without the participation of oxygen. It involves the simultaneous change of chemical composition and physical phase, and is irreversible. The word is coined from the Greek-derived elements pyr "fire" and lysis "separating".
Pyrolysis is a special case of thermolysis, and is most commonly used for organic materials, being, therefore, one of the processes involved in charring. The pyrolysis of wood, which starts at 200–300 °C (390–570 °F),[1] occurs for example in fires where solid fuels are burning or when vegetation comes into contact with lava in volcanic eruptions. In general, pyrolysis of organic substances produces gas and liquid products and leaves a solid residue richer in carbon content, char. Extreme pyrolysis, which leaves mostly carbon as the residue, is called carbonization.
The process is used heavily in the chemical industry, for example, to produce charcoal, activated carbon, methanol, and other chemicals from wood, to convert ethylene dichloride into vinyl chloride to make PVC, to produce coke from coal, to convert biomass into syngas and biochar, to turn waste into safely disposable substances, and for transforming medium-weight hydrocarbons from oil into lighter ones like gasoline. These specialized uses of pyrolysis may be called various names, such as dry distillation, destructive distillation, or cracking.
Pyrolysis also plays an important role in several cooking procedures, such as baking, frying, grilling, and caramelizing. In addition, it is a tool of chemical analysis, for example, in mass spectrometry and in carbon-14 dating. Indeed, many important chemical substances, such as phosphorus and sulfuric acid, were first obtained by this process. Pyrolysis has been assumed to take place during catagenesis, the conversion of buried organic matter to fossil fuels. It is also the basis of pyrography. In their embalming process, the ancient Egyptians used a mixture of substances, including methanol, which they obtained from the pyrolysis of wood.
Pyrolysis differs from other high-temperature processes like combustion and hydrolysis in that it does not involve reactions with oxygen, water, or any other reagents. In practice, it is not possible to achieve a completely oxygen-free atmosphere. Because some oxygen is present in any pyrolysis system, a small amount of oxidation occurs.
The term has also been applied to the decomposition of organic material in the presence of superheated water or steam (hydrous pyrolysis), for example, in the steam cracking of oil.
Contents |
Pyrolysis is usually the first chemical reaction that occurs in the burning of many solid organic fuels, like wood, cloth, and paper, and also of some kinds of plastic. In a wood fire, the visible flames are not due to combustion of the wood itself, but rather of the gases released by its pyrolysis, whereas the flame-less burning of a solid, called smouldering, is the combustion of the solid residue (char or charcoal) left behind by pyrolysis. Thus, the pyrolysis of common materials like wood, plastic, and clothing is extremely important for fire safety and fire-fighting.
Pyrolysis occurs whenever food is exposed to high enough temperatures in a dry environment, such as roasting, baking, toasting, grilling, etc.. It is the chemical process responsible for the formation of the golden-brown crust in foods prepared by those methods.
In normal cooking, the main food components that undergo pyrolysis are carbohydrates (including sugars, starch, and fibre) and proteins. Pyrolysis of fats requires a much higher temperature, and, since it produces toxic and flammable products (such as acrolein), it is, in general, avoided in normal cooking. It may occur, however, when grilling fatty meats over hot coals.
Even though cooking is normally carried out in air, the temperatures and environmental conditions are such that there is little or no combustion of the original substances or their decomposition products. In particular, the pyrolysis of proteins and carbohydrates begins at temperatures much lower than the ignition temperature of the solid residue, and the volatile subproducts are too diluted in air to ignite. (In flambé dishes, the flame is due mostly to combustion of the alcohol, while the crust is formed by pyrolysis as in baking.)
Pyrolysis of carbohydrates and proteins requires temperatures substantially higher than 100 °C (212 °F), so pyrolysis does not occur as long as free water is present, e.g., in boiling food — not even in a pressure cooker. When heated in the presence of water, carbohydrates and proteins suffer gradual hydrolysis rather than pyrolysis. Indeed, for most foods, pyrolysis is usually confined to the outer layers of food, and begins only after those layers have dried out.
Food pyrolysis temperatures are, however, lower than the boiling point of lipids, so pyrolysis occurs when frying in vegetable oil or suet, or basting meat in its own fat.
Pyrolysis also plays an essential role in the production of barley tea, coffee, and roasted nuts such as peanuts and almonds. As these consist mostly of dry materials, the process of pyrolysis is not limited to the outermost layers but extends throughout the materials. In all these cases, pyrolysis creates or releases many of the substances that contribute to the flavor, color, and biological properties of the final product. It may also destroy some substances that are toxic, unpleasant in taste, or those that may contribute to spoilage.
Controlled pyrolysis of sugars starting at 170 °C (338 °F) produces caramel, a beige to brown water-soluble product widely used in confectionery and (in the form of caramel coloring) as a coloring agent for soft drinks and other industrialized food products.
Solid residue from the pyrolysis of spilled and splattered food creates the brown-black encrustation often seen on cooking vessels, stove tops, and the interior surfaces of ovens.
Pyrolysis has been used since ancient times for turning wood into charcoal on an industrial scale. Besides wood, the process can also use sawdust and other wood waste products.
Charcoal is obtained by heating wood until its complete pyrolysis (carbonization) occurs, leaving only carbon and inorganic ash. In many parts of the world, charcoal is still produced semi-industrially, by burning a pile of wood that has been mostly covered with mud or bricks. The heat generated by burning part of the wood and the volatile byproducts pyrolyzes the rest of the pile. The limited supply of oxygen prevents the charcoal from burning. A more modern alternative is to heat the wood in an airtight metal vessel, which is much less polluting and allows the volatile products to be condensed.
The original vascular structure of the wood and the pores created by escaping gases combine to produce a light and porous material. By starting with a dense wood-like material, such as nutshells or peach stones, one obtains a form of charcoal with particularly fine pores (and hence a much larger pore surface area), called activated carbon, which is used as an adsorbent for a wide range of chemical substances.
Residues of incomplete organic pyrolysis, e.g., from cooking fires, are thought to be the key component of the terra preta soils associated with ancient indigenous communities of the Amazon basin.[2] Terra preta is much sought by local farmers for its superior fertility compared to the natural red soil of the region. Efforts are underway to recreate these soils through biochar, the solid residue of pyrolysis of various materials, mostly organic waste.
Biochar improves the soil texture and ecology, increasing its ability to retain fertilizers and release them slowly. It naturally contains many of the micronutrients needed by plants, such as selenium. It is also safer than other "natural" fertilizers such as manure or sewage, since it has been disinfected at high temperature. And, since it releases its nutrients at a slow rate, it greatly reduces the risk of water table contamination.[3]
Biochar is also being considered for carbon sequestration, with the aim of mitigation of global warming.[4][5][6] When its volatile and gaseous products are combusted or captured, the biochar process emits primarily water vapor.[7] The solid, carbon-containing char produced can be sequestered in the ground, where it will remain indefinitely.[8]
Pyrolysis is used on a massive scale to turn coal into coke for metallurgy, especially steelmaking. Coke can also be produced from the solid residue left from petroleum refining.
Those starting materials typically contain hydrogen, nitrogen, or oxygen atoms combined with carbon into molecules of medium to high molecular weight. The coke-making or "coking" process consists of heating the material in closed vessels to very high temperatures (up to 2,000 °C or 3,600 °F) so that those molecules are broken down into lighter volatile substances, which leave the vessel, and a porous but hard residue that is mostly carbon and inorganic ash. The amount of volatiles varies with the source material, but is typically 25-30% of it by weight.
Carbon fibers are filaments of carbon that can be used to make very strong yarns and textiles. Carbon fiber items are often produced by spinning and weaving the desired item from fibers of a suitable polymer, and then pyrolyzing the material at a high temperature (from 1500–3000 °C or 2730–5430 °F).
The first carbon fibers were made from rayon, but polyacrylonitrile has become the most common starting material.
For their first workable electric lamps, Joseph Wilson Swan and Thomas Edison used carbon filaments made by pyrolysis of cotton yarns and bamboo splinters, respectively.
Pyrolysis is the reaction used to coat a preformed substrate with a layer of pyrolytic carbon. This is typically done in a fluidized bed reactor heated to 1000–2000 °C or 1830–3630 °F. Pyrolytic carbon coatings are used in many applications, including artificial heart valves.[9]
Pyrolysis is the basis of several methods that are being developed for producing fuel from biomass, which may include either crops grown for the purpose or biological waste products from other industries.[10]
Although synthetic diesel fuel cannot yet be produced directly by pyrolysis of organic materials, there is a way to produce similar liquid ("bio-oil") that can be used as a fuel, after the removal of valuable bio-chemicals that can be used as food additives or pharmaceuticals.[11] Higher efficiency is achieved by the so-called flash pyrolysis, in which finely divided feedstock is quickly heated to between 350 and 500 °C (660 and 930 °F) for less than 2 seconds.
Fuel bio-oil resembling light crude oil can also be produced by hydrous pyrolysis from many kinds of feedstock, including waste from pig and turkey farming, by a process called thermal depolymerization (which may, however, include other reactions besides pyrolysis).
Anhydrous pyrolysis can also be used to produce liquid fuel similar to diesel from plastic waste.[11][12]
In many industrial applications, the process is done under pressure and at operating temperatures above 430 °C (806 °F). For agricultural waste, for example, typical temperatures are 450 to 550 °C (840 to 1,000 °F).
Since pyrolysis is endothermic,[13] various methods to provide heat to the reacting biomass particles have been proposed:
For flash pyrolysis, the biomass must be ground into fine particles and the insulating char layer that forms at the surface of the reacting particles must be continuously removed. The following technologies have been proposed for biomass pyrolysis:[14]
In vacuum pyrolysis, organic material is heated in a vacuum in order to decrease boiling point and avoid adverse chemical reactions. It is used in organic chemistry as a synthetic tool. In flash vacuum thermolysis or FVT, the residence time of the substrate at the working temperature is limited as much as possible, again in order to minimize secondary reactions.
Many sources of organic matter can be used as feedstock for pyrolysis. Suitable plant material includes greenwaste, sawdust, waste wood, woody weeds; and agricultural sources including nut shells, straw, cotton trash, rice hulls, switch grass; and animal waste including poultry litter, dairy manure, and potentially other manures. Pyrolysis is used as a form of thermal treatment to reduce waste volumes of domestic refuse. Some industrial byproducts are also suitable feedstock including paper sludge and distillers grain.[17]
There is also the possibility of integrating with other processes such as mechanical biological treatment and anaerobic digestion.[18]
Destructive fires in buildings will often burn with limited oxygen supply, resulting in pyrolysis reactions. Thus, pyrolysis reaction mechanisms and the pyrolysis properties of materials are important in fire protection engineering for passive fire protection. Pyrolytic carbon is also important to fire investigators as a tool for discovering origin and cause of fires.
The Wiktionary entry for pyrolysis